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Abstract. In this note we consider the problem of localization and approximation of eigenvalues of
operators on infinite dimensional Banach and Hilbert spaces. This problem has been studied for operators
of finite rank but it is seldom investigated in the infinite dimensional case. The eigenvalues of an operator
(between infinite dimensional vector spaces) can be positioned in different parts of the spectrum of the
operator, even it is not necessary to be isolated points in the spectrum. Also, an isolated point in the
spectrum is not necessary an eigenvalue. One method that we can apply is using Weyl’s theorem for an
operator, which asserts that every point outside the Weyl spectrum is an isolated eigenvalue.

1.. Introduction

Many problems in applied linear algebra can be reduced to eigenvalue problems, that is, for a given
linear transformation T, we need to know its eigenvalues. Let X be a Banach space over the complex field
C, we say λ ∈ C is an eigenvalue of T if there exists a non-zero vector x ∈ X such that Tx = λx (or equivalently
(T − λI)x = 0). The corresponding non-zero vector x is called an eigenvector associated with the eigenvalue
λ. The problem of determining the eigenvalues has been widely studied when X is finite-dimensional and,
provided the dimension is reasonable for computations, exact eigenvalues can be found. On the other
hand, when X is infinite-dimensional the exact eigenvalues can rarely be found even when they are isolated
points of the spectrum. Thus, we have to use some kind of approximation for such point in the spectrum,
and generalize this process for the case of spectral sets.

Let B(X) denote the algebra of bounded linear transformations (equivalently, operators) of X into itself.
T ∈ B(X) is said to be invertible if there exists an operator S ∈ B(X) such that TS = ST = I, where I denotes
the identity in B(X); in this case we write T−1 := S. Let σ(T) denote the (usual) spectrum of T, i.e.

σ(T) := {λ ∈ C : T − λI is not invertible},

and ρ(T) := C \ σ(T) denote the resolvent set of T. The set of all eigenvalues of T will be denoted by σp(T).
The spectrum is a nonempty compact set of C, but it may happen that σp(T) is empty (see Example 3.1
below).

Recall T ∈ B(X) is a Fredholm operator if dim N(T) < ∞ and codimR(T)(= dim X/R(T)) < ∞, where N(T)
denotes the kernel of T and R(T) the range of T. If dim N(T) = codimR(T) < ∞ then we say T is a Weyl
operator.
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For T ∈ B(X),
σe(T) := {λ ∈ C : T − λI is not Fredholm}

is the Fredholm (essential) spectrum of T, and

σw(T) := {λ ∈ C : T − λI is not Weyl}

is the Weyl spectrum of T.
Let Λ ⊂ σ(T) be such that Λ is open and closed in the relative topology of σ(T), then we say that Λ is a

spectral set for T.
An elementary Cauchy domain is a bounded open connected subset of C whose boundary is the union

of a finite number of nonintersecting Jordan curves. A finite union of elementary Cauchy domains with
disjoint closures is called a Cauchy domain.

Let D be a Cauchy domain. If each involved Jordan curve is oriented in such a way that the points in D
lie to the left side when the curve is traced out, then the oriented boundary is called a Cauchy contour.

Let C be a Cauchy contour, then we define int(C) = D for the interior of C and ext(C) = C \ (D ∪ C) for
the exterior. Let E, Ẽ ⊂ C be such that E ⊂ int(C) and Ẽ ⊂ ext(C), then we say that C separates E from Ẽ. The
set of all Cauchy contours separating Λ from σ(T) \Λ will be denoted by C(T,Λ).

For z ∈ ρ(T),
R(T, z) := (T − zI)−1

is called the resolvent operator of T at z.
For a spectral set Λ for T ∈ B(X) and C ∈ C(T,Λ), define

P(T,Λ) = −
1

2πi

∫
C
R(T, z)dz.

It is well known that P(T,Λ) is a bounded projection of T and Λ, and it does not depend on the particular
choosing of C ∈ C(T,Λ). Let M = R(P) and N = N(P), then σ(T|M) = Λ and σ(T|N) = σ(T) \ Λ (for more
details see [14, pg. 178]).

If λ ∈ σ(T) is an isolated point, it is clear that {λ} is a spectral set for T; let P(T, λ) denote the projection
related to T and {λ}. For λ ∈ σ(T) we say that it is a Riesz point (or finite rank pole) of T if λ is an isolated
eigenvalue of T of finite algebraic multiplicity, i.e. dim P(T, λ)(X) < ∞. For an isolated eigenvalue λ of T, we
say that it has finite geometric multiplicity if dim N(T−λI) < ∞. Throughout this note π0(T) will stand for the
set of Riesz points of T and π00(T) for the set of isolated eigenvalues of T of finite geometric multiplicity. It is
known that π0(T) = isoσ(T) \ σw(T), where isoσ(T) stands for the isolated points of σ(T), and π0(T) ⊂ π00(T)
(see [12], [13]).

2.. Continuity of spectrum

In this paper, for bounded linear operators T and Tn, n ∈ N, we will say that Tn converges to T, in
notation Tn → T, if Tn converges to T in norm, i.e. ‖Tn − T‖ → 0 as n→∞. We can observe the spectrum of
an operator as a mapping from B(X) to the set of all compact nonempty subsets of the complex plane. In this
way, we can ask if this mapping is continuous with respect to the norm metric in B(X) and the Hausdorff
metric in the second space. For the sake of better understanding, we will use the following approach:

Let Bε(λ) be the open ball centered at λ with radius ε. If (τn) is a sequence of compact subsets of C, then
the limit inferior, in notation lim inf τn, is

lim inf τn := {λ ∈ C : ∀ε > 0, ∃n0 ∈N such that ∀n ≥ n0,Bε(λ) ∩ τn , ∅},

and the limit superior, in notation lim sup τn, is

lim sup τn := {λ ∈ C : ∀ε > 0, ∀n0 ∈N, ∃n > n0 such that Bε(λ) ∩ τn , ∅}.

If lim inf τn = lim sup τn, then lim τn is said to exist and it is equal to this common limit.
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Let p be a mapping on B(X) whose values are compact subsets of C. A mapping p is upper (lower)
semicontinuous at T, if for every sequence {Tn} ⊂ B(X) such that Tn → T then lim sup p(Tn) ⊂ p(T) (p(T) ⊂
lim inf p(Tn)). If p is both upper and lower semicontinuous at T, then p is continuous at T and in this case we
write lim p(Tn) = p(T).

Example 2.1. In general, the spectrum is not a continuous mapping in the previous sense.
Let H be the Hilbert space `2(Z) with the usual norm. For x ∈ X, let

T(x)(k) =

{
x(k + 1), k , −1;
0, k = −1. Tn(x)(k) =

{
x(k + 1), k , −1;
x(0)

n k = −1.

Then ‖Tn − T‖ → 0, σ(T) = {x ∈ X : |x| ≤ 1}, σ(Tn) = {x ∈ X : |x| = 1} and, consequently, σ(T) , lim σ(Tn).

The simple fact that the set of all invertible operators in the Banach algebra B(X) is open implies that the
spectrum is an upper semicontinuous mapping. Indeed, let Tn → T (in norm) and λ ∈ lim sup σ(Tn). Then
there exists a sequence of positive integer {nk} and a sequence of points {λnk }, λnk ∈ σ(Tnk ), such that λnk → λ.
Hence, the sequence Tnk −λnk of non-invertible elements converges in norm to T−λ, which implies λ ∈ σ(T)
and this give us the following (see [16]):

Theorem 2.2. The spectrum is an upper semicontinuous mapping in the algebra of bounded linear operators over a
Banach space X.

By previous theorem for continuity of the spectrum at T ∈ B(X) it is sufficient (and necessary) to prove
lower semi-continuity, i.e. that σ(T) ⊂ lim inf σ(Tn). From [18, Proposition 2.3] follows that σ(T) \ σap(T) ⊂
lim inf σ(Tn), where σap(T) denote the approximate point spectrum (λ ∈ σap(T) if and only if T − λ is not
bounded below). Hence, for continuity of the spectrum we must have σap(T) ⊂ lim inf σ(Tn). The next
theorem partially gives an answer for it, but we need some more terminology.

For non-zero T ∈ B(X), the reduced minimum modulus is defined by

γ(T) =: inf
x<N(T)

‖Tx‖
dist(x,N(T))

.

Theorem 2.3. Let {Tn} be a sequence in B(X) that converges in norm to T ∈ B(X). If γ is uniformly bounded below
on {Tn − λ : λ ∈ σap(T), n ∈N}, then

σ(T) = lim σ(Tn).

Proof. By Theorem 2.2 (and comment below it) it is enough to show that σap(T) ⊂ lim inf σ(Tn). Let δ > 0
such that γ(Tn − λ) > δ ≥ 0, for every positive integer n and every λ ∈ σap(T). Suppose that there exists a
point λ ∈ σap(T) such that λ < lim inf σ(Tn). Since λ ∈ σap(T) there exists a sequence {xm} of norm one vectors
such that ‖(T − λ)xm‖ → 0. Without loss of generality, we can suppose that λ < σ(Tn), for every positive
integer n, and consequently

0 ≤ δ < γ(Tn − λ) = inf
‖x‖=1
‖(Tn − λ)x‖ ≤ ‖(Tn − λ)xm‖,

for every positive integers n and m. But

‖(Tn − λ)xm‖ ≤ ‖(Tn − T)xm‖ + ‖(T − λ)xm‖ −→ 0, n,m→∞,

giving us a contradiction.

Remark 2.4. The condition thatγ(Tn−λ) is uniformly bounded below for some sequence {Tn} that converges
in norm to T, with λ ∈ σap(T), is not such scarce in B(X). By G(X) we denote the class of all operators S in
B(X) such that (S− λ)−1 is normaloid for all λ < σ(S), i.e. r((S− λ)−1) = ‖(S− λ)−1

‖, where r(S) is the spectral
radius of S. It is known that classes of all normal and hyponormal operators belong to the class G(X) (for
definitions of such operators see next section).
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Let {Sn} ⊂ G(X) such that λ < lim inf σ(Sn). Then, there exists a δ > 0 such that d(σ(Sn), λ) > δ (in general
it is true for some subsequence {Snk } of {Sn} but, without loss of generality, we can suppose that it is true for
this sequence). Then, by [15, pg. 203], γ(Sn − λ) = ‖(Sn − λ)−1

‖
−1 and we have

γ(Sn − λ) = ‖(Sn − λ)−1
‖
−1 = (r(Sn − λ)−1)−1 = (max{|µ| : µ ∈ σ((Sn − λ)−1)})−1

= d(σ(Sn), λ) > δ

(for more details see [11, proof of Lemma 2]).

Corollary 2.5. Let the sequence {Tn} ⊂ G(X) converge in norm to T ∈ B(X). Then

σ(T) = lim σ(Tn).

Proof. Follows from Theorem 2.3 and Remark 2.4.

3.. Localization of poles and Weyl’s theorem

In the theory of spectral approximation, it is known that it is easier to approximate a (simple) pole of
an operator than an eigenvalue of (one) finite geometric multiplicity (for more details see [2]). Hence we
prefer that, for some operator T ∈ B(X), π00(T) = π0(T). In general, we have π0(T) ⊂ π00(T). To see this we
can observe any λ ∈ iso σ(T), and relationship between the subspace M = R(P(T, λ)) and the null space of
T − λ or to the null space of some power of T − λ. Using the fact ∪∞n=1N[(T − λ)n] ⊂M (for more details see
[1], [10], [13]) we get the inclusion. The answer on the question when equality holds we can find trough
Browder theorem for an operator. We say that an operator obeys Browder’s theorem if

σ(T) \ σw(T) = π0(T).

The stronger version of this is called Weyl’s theorem; for T ∈ B(X) we say Weyl’s theorem holds if

σ(T) \ σw(T) = π00(T).

It is known that Weyl’s theorem implies Browder’s theorem and Browder’s theorem with condition π0(T) =
π00(T) implies Weyl’s theorem for operator T (for more details see [8, Theorem 8.3.1]).

Both of these theorems for an operator T ∈ B(X) guarantees us that every complex number outside the
Weyl spectrum of T are isolated eigenvalues. Moreover, Weyl’s theorem for T tells us that such a point is
a pole of finite algebraic multiplicity. Indeed, the very first work in this way is the paper of H. Weyl (see
[20]). He studied the spectra of a self adjoint operator T on a Hilbert space and discovered that λ ∈ σ(T + K)
for every compact operator K if and only if λ is not an isolated eigenvalue of finite multiplicity in σ(T).

Suppose thatλ is an isolated point of σ(T). In the case when X is not finite dimensional, it is not necessary
that such point is an eigenvalue. To see this, let T ∈ B(X) be any injective quasinilpotent operator. Then
0 ∈ iso σ(T) and it is not eigenvalue of T. Now, we give a example of such operator T.

Example 3.1. Let `2 be the Hilbert space of all square summable sequences, and let T ∈ B(`2) the operator
defined by

T(x1, x2, x3, . . . ) := (0, x1,
x2

2
,

x3

3
, . . . ).

It is easy to see that (T − λI) is injective for all λ ∈ C and σ(T) = {0}. Indeed, a straight calculation give us
‖Tn
‖ = 1

n! , hence ‖Tn
‖

1/n
→ 0 as n→∞, which implies σ(T) = {0}.

On the other hand, there exist huge classes of linear operators for which the isolated points of σ(T) are
eigenvalues of T. Such operators are called isoloid.

Definition 3.2. Let H be a Hilbert space, then T ∈ B(H) is said to be



S. V. Djordjević, G. Kantún-Montiel / Filomat 29:1 (2015), 75–81 79

• normal if ‖T∗‖ = ‖T‖;

• hyponormal if ‖T∗‖ ≤ ‖T‖;

• p-hyponormal, 0 < p ≤ 1, if ‖T∗‖2p
≤ ‖T‖2p;

• M-hyponormal if there exists an M ≥ 1 such that ‖(T − λI)∗x‖ ≤M‖(T − λI)x‖ for all λ ∈ C and x ∈ H;

• totally paranormal if ‖(T − λ)x‖2 ≤ ‖(T − λ)2x‖ for each unit vector x ∈ H and any complex number λ.

It is known that a normal operator is hyponormal, a 1-hyponormal operator is hyponormal and any
p-hyponormal operator T is is paranormal (see [4],[6],[17]). We shall denote by P the union of all these
classes of operators.

Theorem 3.3. Let T ∈ P. Then every isolated point of σ(T) is an eigenvalue (indeed a simple pole) of T.

Proof. For the case of p-hyponormal operator see [5, Lemma 3.4], for M-hyponormal consult [3, Theorem 3]
and for totally paranormal [19, Proposition 2.4].

In almost every paper that covers topics about Weyl’s type theorems or spectral continuity in some
special class of operators (see [3], [4], [5], [6], [11]) it is supposed that the sequence of operators and its limit
operator belong to the same class. In the next theorem we do not require that the limit of operators is in the
same class.

Theorem 3.4. Let {Tn} ⊂ B(H) be a sequence of operators such that Tn are in P and suppose Tn converges in norm
to an operator T. Then Weyl’s theorem holds for T.

Proof. The proof will be done trough several steps.

STEP I: lim σ(Tn) = σ(T).
Without loss of generality we can suppose that all sequence {Tn} belongs to only one subclass ofP. Then

lim σ(Tn) = σ(T) (in the case of p-hyponormal operators see [5], totally paranormal operators case follows
by Corollary 2.5 and Remark 2.4, M-hyponormal case by [7]).

STEP II: π00(T) = π0(T).
Let λ ∈ π00(T). By continuity of the spectrum at T, λ ∈ lim inf σ(Tn), i.e. there exists a (sub)sequence

{λnk } such that λnk ∈ σ(Tnk ) and λnk → λ. Since λ ∈ iso σ(T), then λnk is an isolated point in σ(Tnk ), for nk big
enough, and, by Theorem 3.3, λnk ∈ π0(Tnk ). Let C be a Cauchy contour that separates λ from the rest of
σ(T). Then C separates λnk from rest of σ(Tnk ). Let

P = P(T, λ) = −
1

2πi

∫
C
R(T, z)dz

and

Pnk = P(Tnk , λnk ) = −
1

2πi

∫
C
R(Tnk , z)dz.

Then, dim R(Pnk ) = 1, Pnk → P, which implies λ ∈ π0(T).

STEP III: lim σw(Tn) = σw(T).
Suppose the contrary, then there exists λ ∈ σw(T) \ lim inf σw(Tn). By STEP I, λ ∈ lim inf σ(Tn) and

consequently, there exists a (sub)sequence {λnk } such that λnk ∈ σ(Tnk ) \ σw(Tnk )(= π0(Tnk )) and λnk → λ. By
previous STEP, we have that λ ∈ π0(T) that implies λ < σw(T). A contradiction.

STEP IV: Weyl’s theorem holds for T.
To complete the proof, it is enough to show that acc σ(T) ⊆ σw(T), the rest follows by [8, Pg. 115 and Thm.

8.4.5]. Suppose that λ ∈ σ(T) \ σw(T). Then, by Steps I and III, λ ∈ lim σ(Tn) \ lim σw(Tn) and, consequently,
there exists a sequence {λn} such that λn ∈ σ(Tn) \ σw(Tn)(= π0(Tn)) and λn → λ. By the proof of STEP II, we
have that λ ∈ π0(T) ⊂ iso σ(T).
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Remark 3.5. For λ ∈ iso σ(T) and any sequence {Tn} ⊂ B(X) that converges in norm to T, we have that
λ ∈ lim inf σ(Tn) (see [16]). But, if λ ∈ π0(T) we have even more, then there exists a sequence λn ∈ π0(Tn)
such that λn → λ and dim P(T, λ) = dim P(Tn, λn) (see [12, Proposition 50.2]).

An eigenvalueλ ∈ π0(T) is called a simple pole if dim P(T, λ) = 1, or equivalently, the algebraic multiplicity
of a simple pole λ is 1. It is known that λ is a simple pole of T if and only if X = N(T − λI) ⊕ R(T − λI).

Let λ be a simple pole of T and {Tn} any sequence of bounded linear operators that converge in norm to
T. Then, from Remark 3.5, for any ε > 0 there is a positive integer n0 such that, for each n ≥ n0, we have a
unique λn ∈ σ(Tn) satisfying |λ − λn| < ε. Also, λn is a simple pole of Tn and λn → λ.

Theorem 3.6. Let {Tn : n = 0, 1, 2, . . .} ⊂ P, Tn → T0(in norm) and λ0 ∈ iso σ(T0). Then for n large enough, there
exists unique λn ∈ π0(Tn) such that

|λn − λ0| ≤
1

1 − ‖Pn − P0‖
‖Tn − T0‖.

Proof. Let Pn = P(Tn, λn) and Mn = R(Pn), n = 0, 1, 2 . . .. By Theorem 3.3 and Remark 3.5 we have that,
for n large enough, dim M0 = 1 = dim Mn. Moreover, by [1, Theorem 3.74], M0 = N(T0 − λ0I) and
Mn = N(Tn − λnI). Also, since Tn → T0, then Pn → P0. Additionally, all of Pn, n = 0, 1, 2, . . ., are self-adjoint
(see [9, 2.3 Applications (a)]) and ‖Pn‖ = 1.

Let ϕ0 be an unit eigenvector of T0 corresponding to λ0 and, for n large enough (say n > n0), let ϕn be an
unit eigenvector of Tn corresponding to λn.

Let Qn : Mn →M0 be defined by Qn(x) = P0(x), for every x ∈Mn. Then Qn is bijective. We split the proof
of this fact in several steps.

I. For n large enough, I − (Pn − P0) and I − (P0 − Pn) are invertible. Since ‖Pn − P0‖ → 0, without loss of
generality, we can suppose that ‖P0 −Pn‖ ≤ 1, for every n > n0, and consequently the operators I− (Pn −P0)
and I − (P0 − Pn) are invertible.

II. Qn is injective. Let x ∈Mn be such that Qn(x) = 0. Then

(I − (Pn − P0))x = x − Pnx + P0x = 0.

Since I − (Pn − P0) is invertible, it follows that x = 0.
III. Qn is surjective. Let y ∈M0 be an arbitrary vector. Then, by invertibility of the operator I− (Pn−P0),

there exists x ∈ H such that y = (I − (Pn − P0))x. Let z = Pnx(= y − x + P0x). Then

P0z = P0(y − x + P0x) = P0y − P0x + P0x = P0y = y.

Hence, Qn is surjective.
Moreover, for every x ∈Mn, we have

‖x‖ − ‖P0x‖ ≤ ‖x − P0x‖ = ‖Pnx − P0Pnx‖ ≤ ‖Pn − P0‖‖x‖,

and consequently ‖Q−1
n ‖ ≤

1
1−‖Pn−P0‖

.

By invertibility of Qn it is easy to see that P0ϕn(= Qn(ϕn)) is a nonzero element of N(T0 − λ0I), and
consequently, P0ϕn is an eigenvector of T0 corresponding to λ0. Also, ϕn = Q−1

n P0ϕn. Thus, for all large n,

λnϕn = λnQ−1
n P0ϕn = (Q−1

n P0Tn)ϕn

and
λ0ϕn = Q−1

n λ0P0ϕn = Q−1
n (T0(P0ϕn)) = (Q−1

n P0T0)ϕn.

Since ‖ϕn‖ = 1, we have

|λn − λ0| = ‖λnϕn − λ0ϕn‖ = ‖(Q−1
n P0)(Tn − T0)ϕn‖ ≤ ‖Q−1

n ‖‖P0‖‖Tn − T0‖ ≤

≤
1

1 − ‖Pn − P0‖
‖Tn − T0‖.
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A spectral set Λ is called a spectral set of finite type if the corresponding spectral subspace P(T,Λ)(X) is
finite dimensional.

It is well known (see, for example, [2, Theorem 2.2]) that if Λ is a nonempty spectral set for T and P is
the corresponding spectral projection, then Λ is a spectral set of finite type for T if and only if Λ consists of
a finite number of spectral values of T, each of which is of finite type. Furthermore, if Λ = {λ1, λ2, . . . , λr}

and P j denotes the spectral projection corresponding to T and λ j, j = 1, . . . , r, then

P = P1 + · · · + Pr, PiP j = 0, i , j,

and rank(P) = m1 + · · ·mr, where m j is the algebraic multiplicity of λ j, j = 1, . . . , r.

Example 3.7. Let X be an n-dimensional linear space and T ∈ B(X) be a linear operator with matrix
representation A ∈ Cn×n. Let Λ = {λ1, . . . , λr} be the spectrum of T (or A). For Pi = P(T, λi), we have

P1 + P2 + · · · + Pr = I and P1 ⊕ · · · ⊕ Pr = X.

The subspaces Pi are T-invariant, and the matrix representation of the operator T obtained using the basis
of the subspaces Pi is the Jordan canonical form of A.

References

[1] P. Aiena, Fredholm and Local Spectral Theory, with applications to Multipliers, Kluwer Acad. Publisher, 2004.
[2] M. Ahues, A. Largillier and B.V. Limaye, Spectral computations for bounded operators, Chapman&Hall/CRC, 2001.
[3] S. C. Arora and R. Kumar, M-hyponormal operators, Yokohama Mathematical Journal 28 (1980), 41–44.
[4] S.L. Campbell and B.C. Gupta, On k-quasihyponormal operators, Math. Japon. 23 (1978-79), 185–189.
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